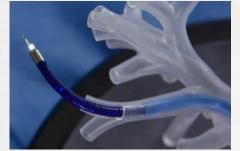


Submitted for IROS 2021 A Steerable Cross-axis Notched (SCAN) Continuum Manipulator

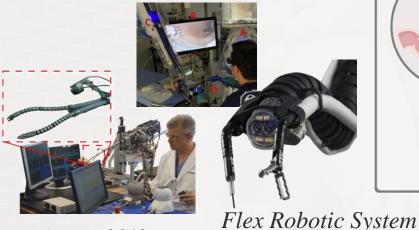
Yilin Cai, Xiaojie Ai, Anzhu Gao, Member, IEEE, and Weidong Chen, Member, IEEE

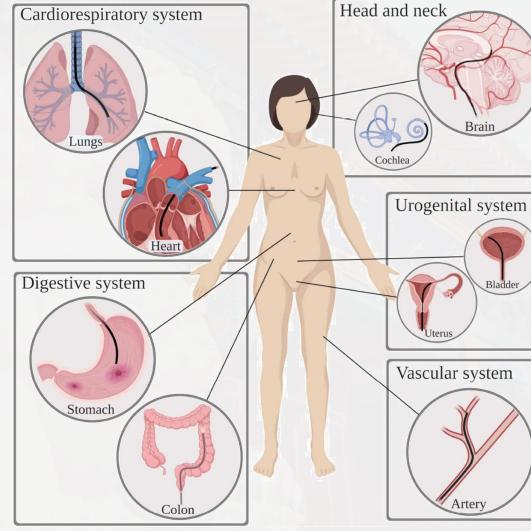

2021.3.25

思源•爱国

1. Background: Continuum Robots for Surgeries

Bronchoscopy


cable-driven continuum robot



Monarch[™] System (Auris Health)

Abdominal Surgery

Multi-backbone, concentric tubes

Neurosurgery

Steerable needle, concentric tubes

3/28-

K. Eastwood 2016 ICRA

Y. Chitalia 2020

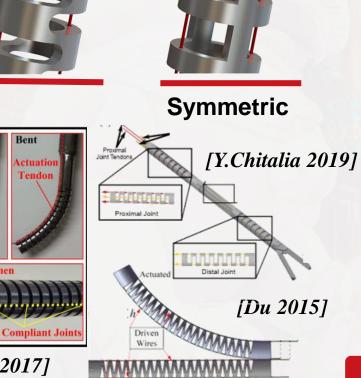
Urologic Surgery

Multi-backbone, concentric tubes

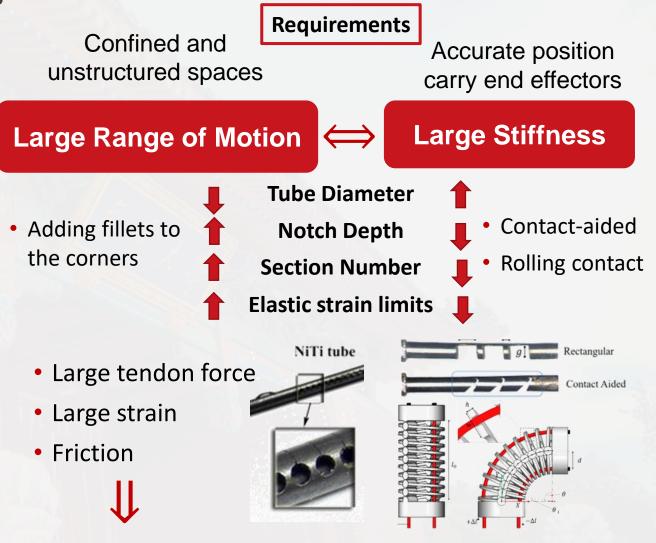


A.Bajo 2012

1. Background: Notched Continuum Manipulator


Notched-tube compliant mechanisms

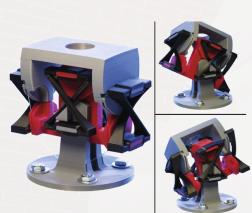
Uni-directional



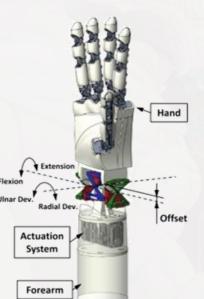
Asymmetric

Bi-directional

4/28-

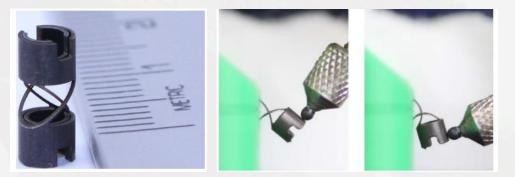

Notch Pattern Design to solve the tradeoff

1. Background: CAFP/CCAFP


Cross-Axis Flexural Pivot (CAFP)

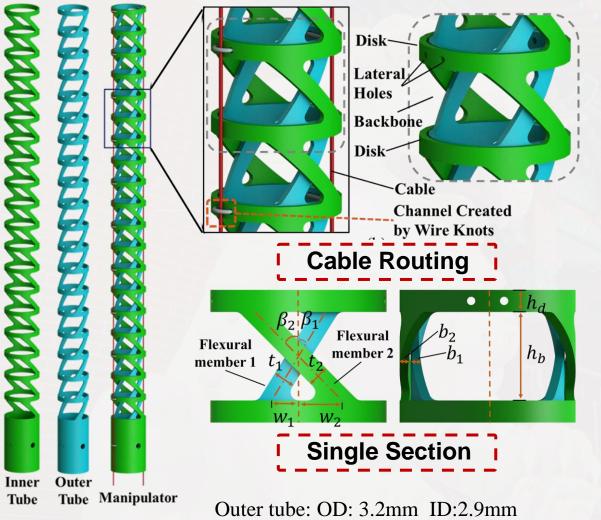
- Beam-based Compliant Mechanism
- Low wear and friction
- Absence of backlash
- Manufactured as a single part

Bio-inspired contact-aided compliant wrist [P. Bilancia 2021]



Cylindrical Cross-Axis Flexural Pivot (CCAFP)

- Integrated into a hollow shaft without interfering with internal components
- Reduce part count, simple manufacturing
- Cam-surface integrated in the cylinder


Compliant mechanisms in minimally invasive surgical applications

5/28-

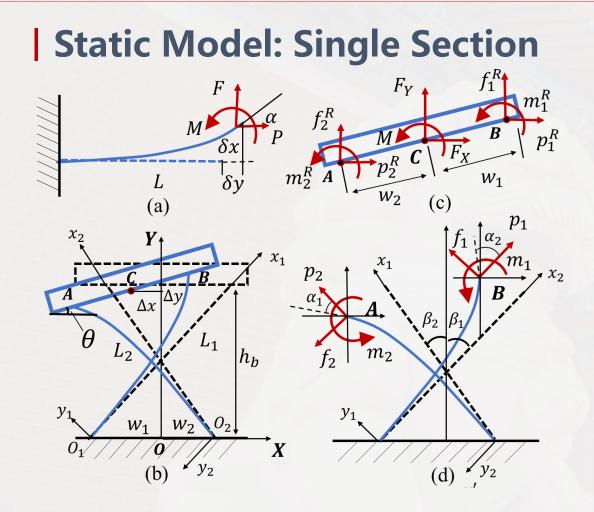
2.1 Design of the SCAN Manipulator

Design and Manufacture

Inner tube: OD:2.8mm ID:2.5mm

CCAFP

a longer bending beam lengthhigher second area of inertia


6/28 -

- 1. High axial force stiffness
- 2. Stiffness transverse to the bending plane
- 3. Selectively alter the stiffness and range of motion by changing the crossing angle
- 4. Smaller strain to improve the safety
- 5. Larger deflection within the ultimate strain

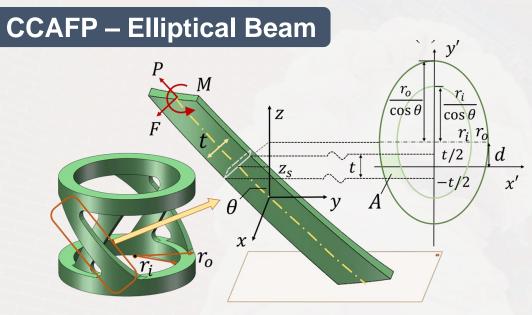
Total length: 43mm

2.2 Modeling of the SCAN Manipulator

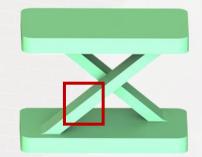
Getting deflection $[\Delta x \Delta y \theta]$ **under** external load $[F_{\chi} F_{\nu} M]$

Beam-Constraint Model (BCM) $\begin{bmatrix} f_i \\ m_i \end{bmatrix} = G \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix} + p_i P_c \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix} + p_i^2 Q_c \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix}$ $\delta_{xi} = \frac{t_i^2 p_i}{12{L_i}^2} - \frac{1}{2} \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix}^T U_c \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix} - p_i \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix}^T V_c \begin{bmatrix} \delta_{yi} \\ \alpha_i \end{bmatrix}$

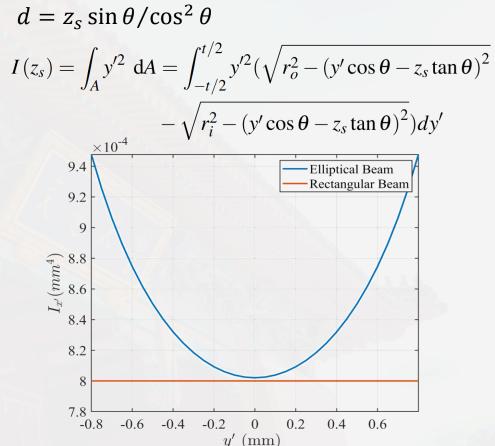
(a) Global Statics Equilibrium $M = (w_1 + w_2) \frac{EI_2}{L_2^2} [\sin \theta - \cos \theta] \begin{bmatrix} \sin \beta_2 & \cos \beta_2 \\ -\cos \beta_2 & \sin \beta_2 \end{bmatrix} \begin{bmatrix} p_2 \\ f_2 \end{bmatrix}$ $+ w_1[\sin\theta - \cos\theta] \begin{bmatrix} F_x \\ F_y \end{bmatrix} + \frac{EI_1}{L_1} m_1 - \frac{EI_2}{L_2} m_2$ $\begin{bmatrix} F_x \\ F_y \end{bmatrix} + \frac{EI_1}{L_1^2} \begin{bmatrix} -\sin\beta_1 & \cos\beta_1 \\ -\cos\beta_1 & -\sin\beta_1 \end{bmatrix} \begin{bmatrix} p_1 \\ f_1 \end{bmatrix} + \frac{EI_2}{L_2^2} \begin{bmatrix} \sin\beta_2 & \cos\beta_2 \\ -\cos\beta_2 & \sin\beta_2 \end{bmatrix} \begin{bmatrix} p_2 \\ f_2 \end{bmatrix} = 0$


Global Geometric Constraint Equations

$\begin{bmatrix} (w_1 + w_2) + (w_2 + w_1)\cos\theta\\ (w_1 + w_2)\sin\theta \end{bmatrix}$	$\theta = \alpha_1 = \alpha_2$
$= \begin{bmatrix} -\sin\beta_2 & -\cos\beta_2 \\ \cos\beta_2 & -\sin\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ \sin\beta_2 \end{bmatrix} = \begin{bmatrix} x_A \\ y_A \end{bmatrix} - \begin{bmatrix} \sin\beta_2 \\ \cos\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ \sin\beta_2 \end{bmatrix} = \begin{bmatrix} x_A \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\begin{bmatrix} n \beta_1 & -\cos \beta_1 \\ s \beta_1 & \sin \beta_1 \end{bmatrix} \begin{bmatrix} x_B \\ y_B \end{bmatrix}$

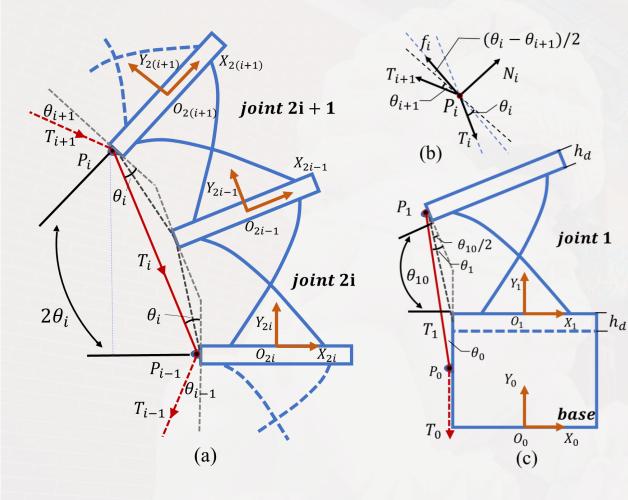

 $\begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} -\sin\beta_2 & -\cos\beta_2 \\ \cos\beta_2 & -\sin\beta_2 \end{bmatrix} \begin{bmatrix} x_A \\ y_A \end{bmatrix} + \begin{bmatrix} w_2 + w_2 \cos\theta \\ w_2 \sin\theta \end{bmatrix} - \begin{bmatrix} 0 \\ L_2 \cos\beta_2 \end{bmatrix}$

2.2 Modeling of the SCAN Manipulator


Static Model: Second moment of area

CAFP – Rectangular Beam

t In-plane thickness *b* Out-of-plane thickness Second moment $I = \frac{1}{12}t^3b$



8/28-

CCAFP's Flexure has Larger Second Moment of Area

2.2 Modeling of the SCAN Manipulator

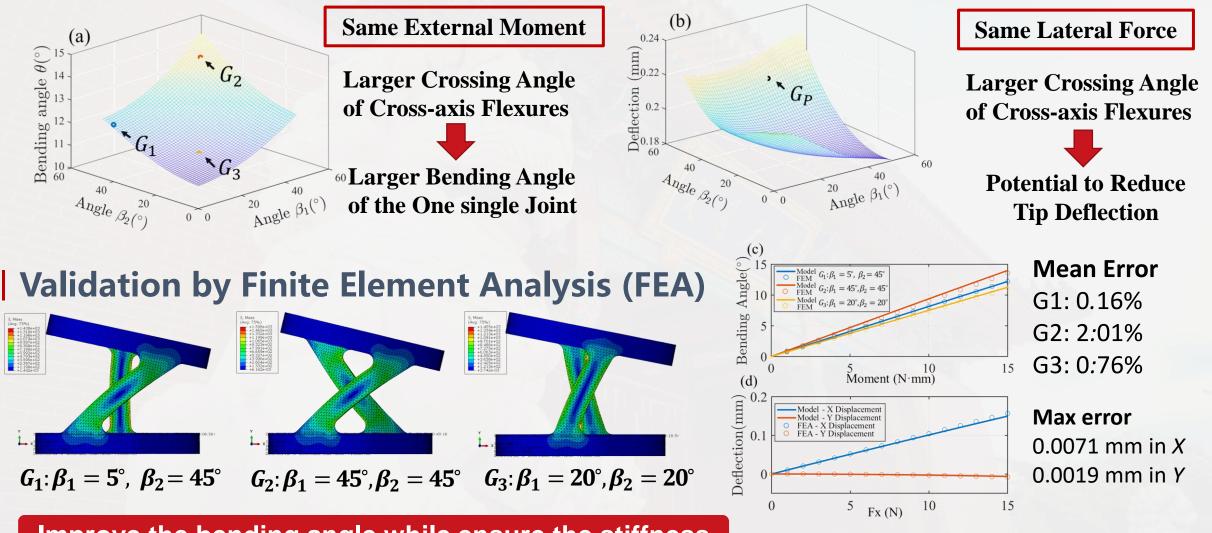
Static Model: Multiple Section

Tendon Force Propagation

$$T_{i+1} = T_i \cdot \frac{\cos\frac{\theta_i + \theta_{i+1}}{2} - \mu_i \sin\frac{\theta_i + \theta_{i+1}}{2}}{\cos\frac{\theta_i + \theta_{i+1}}{2} + \mu_i \sin\frac{\theta_i + \theta_{i+1}}{2}}$$
$$T_1 = T_0 \cdot \frac{\cos\theta_0/2 - \mu_0 \sin\theta_0/2}{\cos\theta_0/2 + \mu_0 \sin\theta_0/2}$$

9/28—

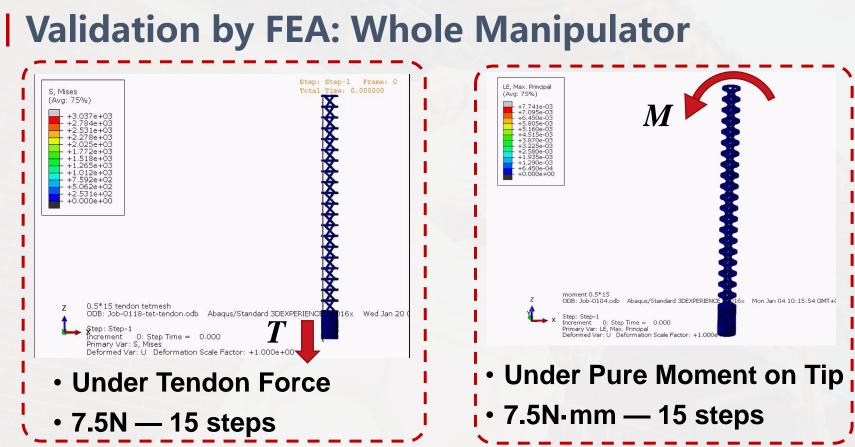
Input of Single Section $[\Delta x_i \Delta y_i \theta_i]$ $F_{xi} = T_i \sin \frac{\theta_i}{2}, F_{yi} = -T_i \cos \frac{\theta_i}{2}, M_i = r_t T_i \cos \frac{\theta_i}{2}$

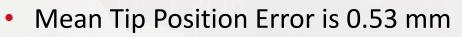

Homogeneous transformation

$\mathbf{A}_{i}^{i+1} =$	1 0 0 0	$0 \\ \cos \theta_i \\ \sin \theta_i \\ 0$	$0 \\ -\sin \theta_i \\ \cos \theta_i \\ 0$	$\begin{array}{c} 0 \\ \Delta x_i \\ \Delta y_i \\ 1 \end{array}$	$\mathbf{A}_{G}^{tip} = \mathbf{A}_{0} \prod_{i=1}^{n} \mathbf{A}_{i}^{i+1} \mathbf{A}_{d}$
	0	0	0	I _	

Getting Manipulator's Tip Position in the Base Frame

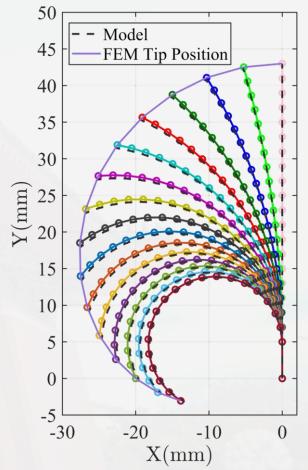
2.3 Model Analysis and Validation


Model Analysis


10/28-

Improve the bending angle while ensure the stiffness

2.3 Model Analysis and Validation



- Friction coefficient = 0.6
- Non-constant Curvature

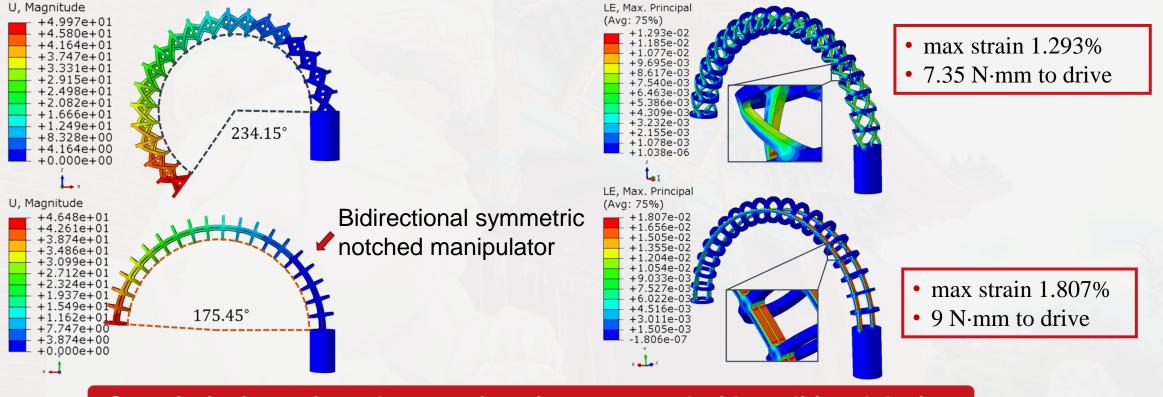
• 1.24% of the manipulator length

Comparison of FEA and Theoretical Model

Both the shape and tip position reached a good agreement

2.3 Model Analysis and Validation

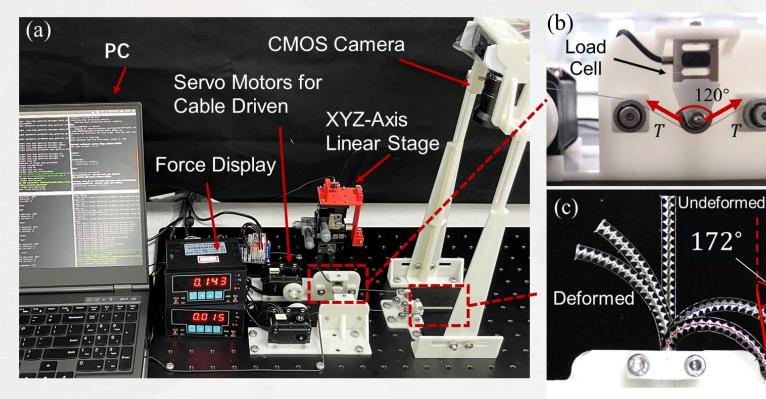
FEA Result Comparison


9 N•mm pure moment applied to the tip

- 58.7° larger in bending angle
- 33.5% improvement in the range of motion

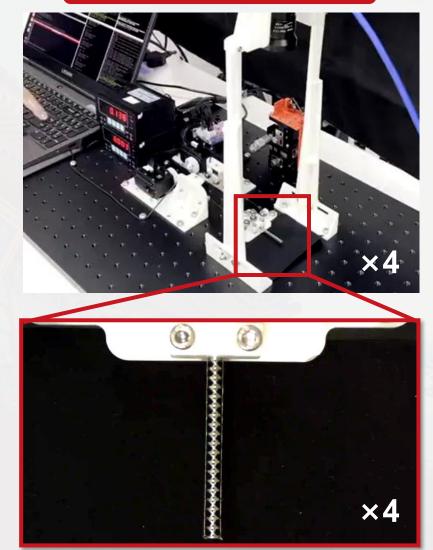
Both reaching 175° bending angle

12/28 -

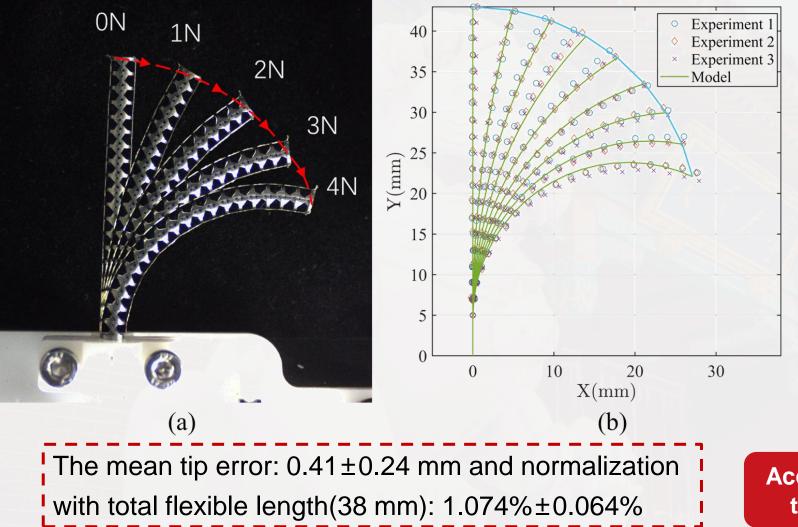

- 28.4% smaller in max strain
- 22.45% less force to actuate

Superiority in strain and range of motion compared with traditional design

3.1 Experimental Setup


Actuation and Force Measurement Platform

- Manipulator: nitinol tube; cable: 0.1mm stainless steel
- Two server motors pulling the cable
- Cable tension sensor integrating load cells and guide pulleys
- Bending angle: 172° with 7 N cable tension


Deflection Demo

13/28-

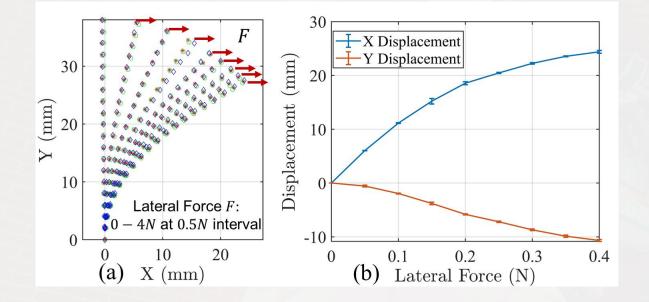
3.2 Free Bending Experiment

Evaluate the static model

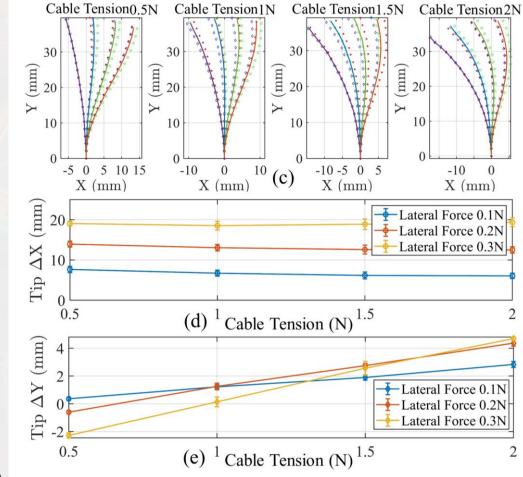
 Calibration: identify the Young's modulus and the friction coefficient

14/28

- Constrained optimization problem
- Sequential quadratic programming
- minimizing the estimated and the experimental tip position
- minimizing constrained nonlinear multivariable function

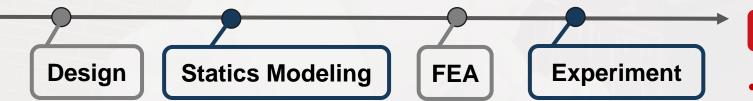

Accurate static model for estimating the behavior of real manipulator

3.3 Stiffness Testing Experiment


Lateral load to free manipulator

15/28

- Later force 0.4 N: 26.61 mm tip displacement
- Later force 0.3 N: 2N cable tension — 19.95 mm tip displacement No cable tension — 23.87 mm tip displacement
- No significant change in X displacement with cable tension


4. Discussion and Conclusion

Solution κ_L Solution κ_L

Index	Tension	Bending	Number	Length	κ_L
Bi-Asym[1]	13N	80°	14	35mm	0.18
Bi-Asym[2]	13N	80°	19	77.7mm	0.08
Ours	7N	172°	19	38mm	0.67

Length normalized stiffness k_L

Index	Aided	Stiffness	Length	k _L
Uni-Asym[3]	Contact-aided	13.59mm/N	6.66mm	1.28
Uni-Asym[3]	No contact-aided	13.59mm/N	6.66mm	2.04
Ours	No contact-aided	66.53mm/N	38mm	1.75

- 33.5% larger in bending angle
- 22.45% less force to actuate
- 28.4% smaller in max strain

[1]M. D. Kutzer et al., "Design of a new cable-driven manipulator with a large open lumen: Preliminary applications in the minimally-invasive removal of osteolysis," in Proc. IEEE Int. Conf. Robot. Autom., Shanghai, China, 2011, pp. 2913–2920

[2]Z. Du et al., "Kinematics modeling of a notched continuum manipulator," *J. Mech. Robot.*, vol. 7, no. 4, Nov. 2015, Art. 041047.

[3]K. W. Eastwood et al., "Design of a contact-aided compliant notched-tube joint for surgical manipulation in confined workspaces," J. Mechanisms Robot., vol. 10, no. 1, 2018, Art. no. 015001.

Future

- Task-oriented optimization
- Structure modification in cross-beams
- More elegant cable routing method

